Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(5)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38474928

RESUMO

Electromyography (EMG) proves invaluable myoelectric manifestation in identifying neuromuscular alterations resulting from ischemic strokes, serving as a potential marker for diagnostics of gait impairments caused by ischemia. This study aims to develop an interpretable machine learning (ML) framework capable of distinguishing between the myoelectric patterns of stroke patients and those of healthy individuals through Explainable Artificial Intelligence (XAI) techniques. The research included 48 stroke patients (average age 70.6 years, 65% male) undergoing treatment at a rehabilitation center, alongside 75 healthy adults (average age 76.3 years, 32% male) as the control group. EMG signals were recorded from wearable devices positioned on the bicep femoris and lateral gastrocnemius muscles of both lower limbs during indoor ground walking in a gait laboratory. Boosting ML techniques were deployed to identify stroke-related gait impairments using EMG gait features. Furthermore, we employed XAI techniques, such as Shapley Additive Explanations (SHAP), Local Interpretable Model-Agnostic Explanations (LIME), and Anchors to interpret the role of EMG variables in the stroke-prediction models. Among the ML models assessed, the GBoost model demonstrated the highest classification performance (AUROC: 0.94) during cross-validation with the training dataset, and it also overperformed (AUROC: 0.92, accuracy: 85.26%) when evaluated using the testing EMG dataset. Through SHAP and LIME analyses, the study identified that EMG spectral features contributing to distinguishing the stroke group from the control group were associated with the right bicep femoris and lateral gastrocnemius muscles. This interpretable EMG-based stroke prediction model holds promise as an objective tool for predicting post-stroke gait impairments. Its potential application could greatly assist in managing post-stroke rehabilitation by providing reliable EMG biomarkers and address potential gait impairment in individuals recovering from ischemic stroke.


Assuntos
Compostos de Cálcio , AVC Isquêmico , Óxidos , Acidente Vascular Cerebral , Adulto , Humanos , Masculino , Idoso , Feminino , Inteligência Artificial , Eletromiografia
2.
Sensors (Basel) ; 23(17)2023 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-37687908

RESUMO

Electroencephalography (EEG) is a non-invasive method employed to discern human behaviors by monitoring the neurological responses during cognitive and motor tasks. Machine learning (ML) represents a promising tool for the recognition of human activities (HAR), and eXplainable artificial intelligence (XAI) can elucidate the role of EEG features in ML-based HAR models. The primary objective of this investigation is to investigate the feasibility of an EEG-based ML model for categorizing everyday activities, such as resting, motor, and cognitive tasks, and interpreting models clinically through XAI techniques to explicate the EEG features that contribute the most to different HAR states. The study involved an examination of 75 healthy individuals with no prior diagnosis of neurological disorders. EEG recordings were obtained during the resting state, as well as two motor control states (walking and working tasks), and a cognition state (reading task). Electrodes were placed in specific regions of the brain, including the frontal, central, temporal, and occipital lobes (Fz, C1, C2, T7, T8, Oz). Several ML models were trained using EEG data for activity recognition and LIME (Local Interpretable Model-Agnostic Explanations) was employed for interpreting clinically the most influential EEG spectral features in HAR models. The classification results of the HAR models, particularly the Random Forest and Gradient Boosting models, demonstrated outstanding performances in distinguishing the analyzed human activities. The ML models exhibited alignment with EEG spectral bands in the recognition of human activity, a finding supported by the XAI explanations. To sum up, incorporating eXplainable Artificial Intelligence (XAI) into Human Activity Recognition (HAR) studies may improve activity monitoring for patient recovery, motor imagery, the healthcare metaverse, and clinical virtual reality settings.


Assuntos
Inteligência Artificial , Aprendizado de Máquina , Humanos , Eletroencefalografia , Atividades Humanas
3.
Sensors (Basel) ; 22(8)2022 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-35459064

RESUMO

Electroencephalography (EEG) is immediate and sensitive to neurological changes resulting from sleep stages and is considered a computing tool for understanding the association between neurological outcomes and sleep stages. EEG is expected to be an efficient approach for sleep stage prediction outside a highly equipped clinical setting compared with multimodal physiological signal-based polysomnography. This study aims to quantify the neurological EEG-biomarkers and predict five-class sleep stages using sleep EEG data. We investigated the three-channel EEG sleep recordings of 154 individuals (mean age of 53.8 ± 15.4 years) from the Haaglanden Medisch Centrum (HMC, The Hague, The Netherlands) open-access public dataset of PhysioNet. The power of fast-wave alpha, beta, and gamma rhythms decreases; and the power of slow-wave delta and theta oscillations gradually increases as sleep becomes deeper. Delta wave power ratios (DAR, DTR, and DTABR) may be considered biomarkers for their characteristics of attenuation in NREM sleep and subsequent increase in REM sleep. The overall accuracy of the C5.0, Neural Network, and CHAID machine-learning models are 91%, 89%, and 84%, respectively, for multi-class classification of the sleep stages. The EEG-based sleep stage prediction approach is expected to be utilized in a wearable sleep monitoring system.


Assuntos
Ritmo Gama , Fases do Sono , Adulto , Idoso , Biomarcadores , Eletroencefalografia , Humanos , Pessoa de Meia-Idade , Polissonografia , Sono/fisiologia , Fases do Sono/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...